HARBOUR TOWN GOLF LINKS 18TH GREEN SHORELINE RESTORATION AND MARSH RESTORATION PROJECT

Chris Creed, P.E. olsen associates, inc. Jacksonville, Florida <u>ccreed@olsen-associates.com</u>

Coastal En

Harbour Town Yacht Basin

19-

Marsh

Tidal Flat

Marina Channel

Siltation

Barriers

(1989)

380-ft Bulkhead/ Revetment

1/ nt 18th Green

Tidal Flat

Date of Photography: January 2005

Representative Dates for Shoreline Locations		Timo	Recession Rate (ft/yr)					
		(yrs)	Transect A	Transect B	Transect C	Average		
Jan-95	Jan-99	4.0	-3.6	-3.1	-7.5	-4.7		
Jan-99	Dec-03	4.9	-7.5	-9.2	-13.8	-10.2		
Dec-03	Jan-05	1.1	-13.7	-27.0	-34.0	-24.9		
Average			-8.2	-13.1	- 18.5	-13.3		

Why did the marsh leave...?

Development

Establishment of Marina and Associated Infrastructure

Interruption of Littoral Drift

General Trend of Sand is from North to South

Why did the marsh leave...?

Development

Establishment of Marina and Associated Infrastructure

Interruption of Sand Littoral Processes

- General Trend of Sand Transport is from North to South
 - Wave and Tidal Current Transport

Increased Wave Heights

- Introduction of Vertical Inlet Structures
 - Increased Wave Heights Due to Reflection
- Sea Floor Deepening Seaward of Marsh
 - Navigation Channel Dredging/Maintenance

Sea Floor Deepening Seaward of Marsh

Roland and Douglass (2005)

Harbour Town Yacht Basin

19

Marsh

Tidal Flat

Marina Channel

18th Green

Tidal Flat

Project Goals

- Protect the 18th Green from Erosion
- Return original aesthetics and playing conditions of the iconic 18th hole and green
 - Broad marsh buffer between hole/green and Calibogue Sound
 - Consistent water hazard to left of green

Design Precepts

Reduce Wave Energy

Consider wave reflection from adjacent vertical wall

Restore suitable elevations and substrate for marsh reestablishment and sustainability

Replicate conditions found along adjacent healthy marshes

Provide for adequate water exchange

Replace marsh grasses

Design Concept

GRAPHIC SCALE

EXISTING

Implementation

T-head groins and "pocket" beaches

Olsen associates, inc

High Tide Elevation

····· High Tide Elevation + 1 Ft Wave Setup/Runup

PLANTING NOTES

Plant Materials

A prior management of the second staff be marked with the second and free of disease, insect, peets, eggs or larvae, and shall have well developed root system. Container grown plants shall have sufficient roots to held planting mis intact after removal from comainers, but should net be root bound

Planting Rate, Depth and Watering

When available, sord should be sown according to cubated specifications at recommended depths. Stolens or thizomes should be planted 4 to 12 incluss deep, or deep ensugh to have adequate soil moisture at the time of planting. Cut starms should be planted at a 45-degree angle, deep enough to bury several growth nodes.

Use a tree dibble, asper or hund/liset shovel to plant vegetative material. Spacing vegetation must be planted to a width of at least 10 feet. Plant spacing will be at 24" on center with staggered with triangular spacing of planted rows. It is essential that any planted material be watered after planting within the same day. If all plantings are not accomplished is one day, then the finished plantings must be watered in the interim-

Fertilization

NOTES

Initial fertilization is best done at planting with a complete slow release fertilizer, such as *Onnocotes 14-14-14, placed ander the plant at a rate of 1.5 grants per plant. Initial fertilization may also be provided with 200 to 300 pounds of mineral 10-10-10 per acre broadcast six weeks after planting. In addition, the enablishment of have root and some currings can be avaiand by using fertilizer combined with a water absorbing grandee called bydrogil. This material is externely water absorbent and has the additive to absorb handreds of times its weight in water. Hydroled hydrogil combined with fertilizer can be placed in the planting here just placement. Absorbed water and fast the additive to absorb handreds of times its weight in water.

CONSTRUCTION NOTES:

Alan H. Jackson

Landscape Architect, LLC

Island Postal Center, 13 Bow Circle, PMB 209

Hilton Head Island, South Carolina 29928

email: Alaxt6@Mac.Com / phone: 8433383017

Permitting

- Significant concerns by resource and regulatory agencies
 - Fill in the Critical Area
 - Questioned success expectations
- No examples in the state of South Carolina
 - Used examples from Palm Beach County to provide agencies reasonable assurance
- Strict Monitoring and Mitigation Plan

Project Summary

Six shore-stabilizing structures

- 1,200 tons of armor rock
- 40 stone-filled marine mattresses
- 1,500 cy of grading
- 3,000 cy (+/-) of sand fill from upland source
- Grade existing material (1,500 cy) and import 2,000 cy (+/-) of sand fill from upland source to recreate marsh substrate
- ~1.5 acres of marsh grasses (20,000+ plants)

September 9, 2011

September 29, 2011

-late

October 18, 2011

INTERNET

November 30, 2011

December 5, 2011

- ATTANT - T

Contractor: Cape Romain Contractors, Inc., Wando, SC

Construction Cost: \$635,000.00, including planting

Pre-Project (2010)

Project Timeline...

- 2005: Erosion and project feasibility study
- 2006-08: Permit acquisition period
- 2008: State and Federal Permits are Issued.
- 2008: Bids solicitation. Proposed prices exceed project budgets and project implementation is delayed.
- 2010: Value Engineering study to evaluate design modification to reduce construction costs.
- 2011 : Re-bid. 30% reduction is proposed costs relative to 2008 bids.
- 2011: Shore-stabilizing structures and marsh grade complete.
- **2012:** Plant installation complete.

Monitoring and Performance

- Evaluate the stability of the recreated marsh elevations and grades.
- Evaluate the stability of the stabilizing structures.
- Evaluate physical condition of the adjacent tidal creek, tidal flats and downdrift shoreline.
- Maintain adequate tidal flooding and drainage to facilitate marsh grass survival and development.
- Establish approximately 75 percent planted marsh grass plants at the end of the first 12 months.
- Provide marsh grass densities similar to adjacent areas within 3-5 years.

Monitoring Plan

October 2010

July 2011 (Pre-construction)

November 30, 2011

December 22, 2011 (~1 month)

REAL TRANS IN COMPANY

L'ETT TT

August 15, 2012 (~9 months)

May 7, 2014 (~30 months)

May 24, 2016 (~54 months)

Jan. 2017 (60-months)

the state of the s

Plant Density

Quadrant # 7 contained accreted oyster shells within existing Spartina density of 50%

Quadrant # 8 contained marsh periwinkles within planted Spartina density of 100%

Quadrant # 9 contained marsh periwinkles within existing Spartina density of 100%

Plant Density

	Spartina Density (Percentage)										
Biological Survoy	Transect 1			Transect 2		Transect 3					
Date	1	2	3	4	5	6	7	8	9	Average	
September 2011 Pre-Planting	0%	50%	95%	10%	45%	0%	75%	100%	90%	52%	
July 2012 6 Months Post	25%	50%	50%	10%	30%	50%	75%	100%	100%	54%	
December 2012 1 Year Post	25%	50%	25%	10%	25%	10%	25%	90%	25%	32%	
July 2013 1.5 Years Post	75%	25%	25%	25%	95%	5%	25%	100%	25%	44%	
December 2013 2 Years Post	95%	75%	10%	25%	75%	50%	50%	95%	95%	63%	
November 2014 3 Years Post	95%	100%	25%	25%	90%	90%	10%	100%	100%	71%	
December 2015 4 Years Post	75%	90%	95%	50%	60%	90%	50%	100%	100%	79%	

Monitoring and Performance

- No measurable change to marsh elevations and grades
- No change to stabilizing structures
- Tidal creek and downdrift shoreline have continued to evolve
- Tidal flooding and drainage to marsh area remains unconstrained
- 90 percent marsh grass survival at 12 months
- Average grass densities in restored are similar to adjacent areas
- Only notable area with poor grass survival is within 75 feet of siltation barrier

2015

Hurricane Matthew

A WAN AN

A IDAKTAT K

+10.5' NGVD

October 2016 (Post-Matthew)

HARBOUR TOWN GOLF LINKS 18TH GREEN SHORELINE RESTORATION AND MARSH RESTORATION PROJECT

Chris Creed, P.E. olsen associates, inc. Jacksonville, Florida <u>ccreed@olsen-associates.com</u>

